Senin, 11 Juli 2011

PENGEMBANGAN KOMPETENSI GURU MATEMATIKA MELALUI MODEL-MODEL PEMBELAJARAN, LESSON STUDY DAN PTK MELALUI PENINGKATAN P MGMP

PENDAHULUAN

Dewasa ini pengembangan profesi guru sudah menjadi tuntutan yang tidak bisa ditawar lagi. Baik secara legal formal maupun secara normatif pengembangan profesi guru sudah mencapai tahap sistemik. Kajian empiris dan kebijakan menunjukkan bahwa MGMP sebagai organisasi yang menghimpun guru-guru sebidang studi, mempunyai kedudukan dan fungsi yang sangat strategis. Di dalam MGMP para guru dapat melakukan tukar-menukar ide atau teori kependidikan, mengembangkan model-model pendidikan, melakukan model pembelajaran pendidikan dan melakukan aspek-aspek pengembangan profesi lainnya.
Kompetensi guru juga sering dikaitkan dengan kegiatannya sebagai profesi. Profesi mempunyai pengertian seseorang yang menekuni pekerjaan berdasarkan keahlian, kemampuan, teknik, dan prosedur berlandaskan inteltualitas (Volmer & Mills, 1966, Cully, 1969) di Depdiknas. Profesi sebagai spesialisasi dari jabatan intelektual yang diperoleh melalui studi dan training, bertujuan menciptakan ketrampilan, pekerjaan yang bernilai tinggi, sehingga ketrampilan dan pekerjaan itu diminati, disenangi oleh orang lain, dan dia dapat melakukan pekerjaan itu dengan mendapat imbalan berupa bayaran, upah, dan gaji (Sagala, 2000). Di dalam kelas guru berperan sebagai komunikator dan guru sebagai fasilitator memiliki peran memfasilitasi siswa untuk belajar secara maksimal dengan menggunakan berbagai strategi/metode, media, dan sumber belajar. Dalam proses pembelajaran siswa sebagai titik sentral belajar, siswa yang lebih aktif, mencari dan memecahkan permasalahan belajar, dan guru membantu kesulitam siswa yang mendapat hambatan, kesulitan dalam memahami, dan memcahkan permasalahan. Kompetensi profesi guru meliputi kompetensi pedagogik, kompetensi kepribadian, kompetensi sosial, dan kompetensi profesional.
Secara legal formal profesi guru dewasa ini dikembangkan dengan pemberian Sertifikasi Bagi Guru Dalam Jabatan (Permendiknas No 18 Tahun 2007), maka pengembangan profesionalisme guru diarahkan untuk penguatan kompetensi guru berdasarkan standar kompetensi guru, (pedagogik, kepribadian, sosial, dan profesional). Cara pengembangan profesi dapat dilakukan melalui (antara lain): forum MGMP, seminar/workshop, penerbitan majalah ilmiah, lesson study, pelatihan, studi lanjut. Keempat kompetensi tersebut (pedagogik, kepribadian, sosial, dan profesional) perlu dilakukan secara terus-menerus atau berkelanjutan agar profesionelisme guru terus meningkat.
PEMBAHASAN

A. GURU SEBAGAI PENGEMBANG MODEL PEMBELAJARAN
Pengembangan model pembelajaran merupakan pengembangan untuk mendapatkan pengetahuan tentang model-model pemnelajaran, dilakukan dengan prosedur tertentu yang bersifat sistematis dan didukung oleh suatu metodologi yang merupakan suatu pengkajian dari aturan-aturan dalam metodenya. Sebagai seorang guru atau calon guru matematika yang inovatif dituntut untuk selalu melakukan pembahasan mengenai bagaimana kita mendapatkan pengetahuan tentang pembelajaran matematika yang sesuai dengan trend terkini. Pengetahuan
kita tentang aspek pembelajaran matematika dikehendaki sebagai pengetahuan yang bersifat ilmiah yaitu suatu pemahaman tentang cara bekerjanya pikiran individu siswa dalam mempelajari matematika, bagaimana memperoleh pemahaman tentang aspek pembelajaran secara arkitektural serta bagaimana seorang guru memahami adanya analogi-analogi di antara pengetahuan siswa, pengetahuan guru dan pengetahuan praktisi tentang pembelajaran matematika. Usaha tersebut dapat dicapai jika dikembangkan suatu metode ilmiah yang memenuhi sifat koherensi dan sifat korespondensi. Penjelasan mengenai fenomena yang terjadi dalam proses belajar matematika sebagai suatu deskripsi kebenaran, memerlukan langkahlangkah empiris yang bersifat rasional untuk memperoleh teori tentang kebenaran dan idealitas praktek pembelajaran matematika. Pengetahuan demikian pada akhirnya baik secara ontologis maupun secara legal formal dapat meningkatkan profesionalisme guru dalam bidang pendidikan matematika.
Keadaan dan usaha mengungkap fenomena pembelajaran matematika dapat digambarkan dengan lingkaran hermenitik dalam mana seorang guru atau seorang pengembang model pembelajaran berusaha mengungkap aspek pembelajaran matematika sebagai suatu gejala atau fenomena baik berupa fakta-fakta yang dapat diamati secara langsung maupun berupa potensipotensi yang memerlukan perlakukan bagi pengembangannya. Lingkaran hermenitik di dalam model pembelajaran pendidikan matematika memberikan kesadaran penuh kepada pengembang model pembelajaran bahwa pembelajaran matematika beserta komponennya tidak bersifat steril, melainkan bersifat terkait atau terhubung dengan berbagai aspek dan konteks pembelajaran baik diwaktu yang telah lampau maupun di waktu sekarang yaitu waktu bagi berlangsungnya pembelajaran. Kesadaran hermenitik mempersiapkan guru sebagai pengembang model pembelajaran untuk menggunakan temuan-temuan pada saat sekarang untuk dapat digunakan untuk perbaikan atau saran bagi pengembangan pembelajaran di waktu berikutnya. Pada garis besarnya terdapat dua macam hermenitik dalam model pembelajaran pendidikan matematika. Jika pengembang model pembelajaran mengarahkan perhatiannya kepada hal-hal spesifik dan berusaha mengungkapkan fenomena atau gejala pembelajaran matematika sebagai dunia real yang dapat ditentukan dengan teori-teori atau metode-metode tertentu; kemudian pengembangan model pembelajaran bersifat realistik.
Pada model pembelajaran dengan hermenitik realistik guru atau pengembang model pembelajaran menfokuskan kepada aspek-aspek tertentu dari pembelajaran matematika dengan keyakinan usahanya akan dapat mengungkap atau menjelaskan dunia yang sedang dihadapi yaitu dunia pembelajaran matematika.
Keadaan dan usaha mengungkap fenomena pembelajaran matematika disertai dengan kesadaran bahwa pembelajaran matematika sebagai suatu dunia menyimpan banyak misteri. Manusia atau guru bersifat terbatas untuk mengetahuinya, namun guru perlu berupaya agar memperoleh gambaran tentang dunia pembelajaran matematika dengan serta merta melakukan dekonstruksi dunia yang dihadap yaitu dunia pendidikan matematika. Hermenitik pengembangan model pembelajaran bersifat dekonstruktif. Gambaran hermenitik dekonstruktif tampak seperti diagram berikut:
Ruang lingkup model pembelajaran pendidikan matematika dapat berasal dari adanya dorongan oleh pengembang model pembelajaran untuk melakukan pembaharuan pendidikan matematika; di mana disadari bahwa inovasi pendidikan matematika dapat bersumber kepada faktor-faktor konseptual, nilai, pragmatis, empirik maupun politis. Dengan menempatkan komponen pembelajaran matematika, dalam konteks model pembelajaran pendidikan matematika, maka Grouws, D.A (1992) menggambarkan berbagai variasi hubungan antar komponen pada level sederhana maupun pada level kompleks.
Ditinjau dari praktek pembelajaran matematika maka paling tidak terdapat dua faktor utama yaitu praktek pembelajaran itu sendiri dan faktor nilai atau value. Jika kita ingin memperbaiki pembelajaran matematika dalam bidang kontent atau materi pembelajaran maka pengembang model pembelajaran dapat melakukan pengamatan terhadap sibelajar ketika mempelajari matematika. Jika pengembang model pembelajaran ingin memperbaiki atau ingin memperoleh metode pembelajaran matematika yang inovatif maka kita perlu memperhatika konteks belajar matematika, metode yang digunakan guru serta pengelolaan pembelajaran matematika. Adapun jika kita ingin memahami tentang mengapa subyek didik belajar matematika dengan cara demikian, dan mengapa metode pembelajaran dilakukan dengan demikian pula, dan apa makna yang terkandung di balik pembelajaran matematika maka mungkin kita sedang berhadapan dengan masalah nilai atau value dari seorang guru matematika dan siswanya, sekolah dan bahkan kurikulumnya.
Penelitian tindakan kelas (PTK) dapat digunakan oleh guru untuk mengembangkan dan menyempurnakan model-model pembelajaran dengan cara memperoleh masukan langsung dari persoalan yang muncul dalam kelas pembelajaran matematika. PTK lebih bermanfaat untuk meningkatkan profesi guru dan waktu pelaksanaannya relatif cepat dibanding dengan model pembelajaran konvensional; dan memanfaatkan teknologi informasi untuk mengenbangkan diri. Model pembelajaran kelas bertujuan untuk meningkatkan kualitas pembelajaran. Model pembelajaran kelas dapat dilakukan menggunakan studi kasus atau lebih memfokuskan dan merefleksikan siatuasi pembelajaran oleh guru yang sudah berpengalaman. Dalam model pembelajaran ini, guru sebagai seorang pengembang model pembelajaran, terlibat dalam aktivitas kelas dalam refleksi gaya mengajarnya. Namun, secara rinci terdapat beberapa penekanan yang berbeda dalam tujuan peneltitian kelas yang berbeda. Seorang guru pengembang model pembelajaran dapat melakukan model pembelajaran kelas untuk menganalisis dan meningkatkan aspek gaya mengajarnya. Guru lain dapat melakukannya untuk mempelajari ketrampilan mengajar tertentu untuk siswa dengan kemampuan tertentu. Guru yang lainnya lagi dapat menyelidiki aspek pengembangan model-model pembelajaran yang lainnya. Terdapat pandangan bahwa guru yang bersifat terbuka cenderung lebih mudah menerima pembaharuan; guru yang bersifat terbuka lebih mudah menerima saran/kritik; guru yang bersifat terbuka lebih mudah melakukan pengembangan model pembelajaran; guru yang bersifat terbuka lebih mampu merefleksikan gaya mengajarnya; guru yang bersifat terbuka lebih toleran terhadap siswa dan koleganya; pengembangan model pembelajaran melatih guru bersifat terbuka. Dengan demikian apa yang diharapkan oleh Kemmis dan McTaggart dalam Hopkins, (1993) akan bisa terwujud yaitu bagaimana guru melaksanakan PTK seperti skema berikut:
Di dalam penelitian tindakan kelas guru dapat melakukan identifikasi masalah; klarifikasi masalah, identifikasi konteks, penjelasan fakta, menetapkan langkah-langkah, dan mengembangkan langkah-langkah. Penelitian kelas tidak harus dimulai dengan merumuskan masalah. Yang diperlukan adalah sikap guru pengembang model pembelajaran yang merasa perlu mengadakan perbaikkan.

B. HAKEKAT MATEMATIKA SEKOLAH DAN IMPLIKASINYA BAGI PENGEMBANGAN MODEL PEMBELAJARAN MATEMATIKA
Pandangan tentang hakekat dan karakteristik matematika sekolah akan memberikan karakteristik mata pelajaran matematika secara keseluruhan. Ditengarai bahwa banyaknya siswa yang belum menyukai pelajaran matematika salah satu sebabnya adalah jenis matematika yang dipelajari. Karakteristik matematika ada bermacam-macam tergantung dari jenis matematika apakah matematika murni, matematika terapan atau matematika sekolah. Matematika murni sering didefinisikan sebagai ilmu pengetahuan yang disusun secara deduksi yang terdiri dari definisi, aksioma dan teorema dalam mana di dalamnya tidak boleh ada saling kontradiksi. Sedangkan matematika terapan adalah bagaimana menerapkan matematika di dalam kehidupan sehari-hari secara seluas-luasnya. Kiranya dapat dimaklumi bersama bahwa pandangan tentang matematika murni yang bersifat aksiomatis beserta matematika terapan belum cukup operasional jika digunakan oleh guru untuk berinteraksi dengan siswa. Oleh karena itu Ebbutt dan Straker (1995: 10-63) mendefinisikan matematika sekolah yang selanjutnya disebut sebagai matematika, sebagai berikut.
Matematika sebagai kegiatan penelusuran pola dan hubungan, yang berimplikasi dari pandangan ini terhadap pengembangan model pembelajaran matematika adalah guru perlu: (1) memberi kesempatan kepada siswa untuk melakukan kegiatan penemuan dan penyelidikan pola-pola untuk menentukan hubungan, (2) memberi kesempatan kepada siswa untuk melakukan percobaan dengan berbagai cara, (3) mendorong siswa untuk menemukan adanya urutan, perbedaan, perbandingan, pengelompokan, dsb, (4) mendorong siswa menarik kesimpulan umum, (5) membantu siswa memahami dan menemukan hubungan antara pengertian satu dengan yang lainnya. Matematika sebagai kreativitas yang memerlukan imajinasi, intuisi dan penemuan, yang berimplikasi dari pandangan ini terhadap model pembelajaran dan pembelajaran matematika adalah guru perlu : (1) mendorong inisiatif siswa dan memberikan kesempatan berpikir berbeda, (2) mendorong rasa ingin tahu, keinginan bertanya, kemampuan menyanggah dan kemampuan memperkirakan, (3) menghargai penemuan yang diluar perkiraan berbagai hal bermanfaat daripada menganggapnya sebagai kesalahan, (4) mendorong siswa menemukan struktur dan desain matematika, (5) mendorong siswa menghargai penemuan siswa yang lainnya, (6) mendorong siswa berfikir refleksif, dan (7) tidak menyarankan hanyabmenggunakan satu metode saja.
Matematika sebagai kegiatan pemecahan masalah (problem solving), yang berimplikasi terhadap pengembangan model pembelajaran matematika adalah guru perlu: (1) menyediakan lingkungan belajar matematika yang merangsang timbulnya persoalan matematika, (2) membantu siswa memecahkan persoalan matematika menggunakan caranya sendiri, (3) membantu siswa mengetahui informasi yang diperlukan untuk memecahkan persoalan matematika, (4) mendorong siswa untuk berpikir logis, konsisten, sistematis dan mengembangkan sistem dokumentasi/catatan, (5) mengembangkan kemampuan dan ketrampilan untuk memecahkan persoalan, (6) membantu siswa mengetahui bagaimana dan kapan menggunakan berbagai alat peraga/media pendidikan matematika seperti : jangka, penggaris, kalkulator, dsb. Matematika sebagai alat berkomunikasi, yang berimplikasi terhadap pengembangan model pembelajaran matematika adalah guru perlu: (1) mendorong siswa mengenal sifat-sifat matematika, (2) mendorong siswa membuat contoh sifat matematika, (3) mendorong siswa menjelaskan sifat matematika, (4) mendorong siswa memberikan alasan perlunya pengembangan matematika, (5) mendorong siswa membicarakan persoalan matematika, (6) mendorong siswa membaca dan menulis matematika, (7) menghargai bahasa ibu siswa dalam membicarakan matematika.
Menurut Ebbutt dan Straker (1995) untuk semua jenjang pendidikan baik SD, SMP maupun SMA, kajian materi pembelajaran matematika meliputi : Fakta (facts), meliputi: informasi, nama, istilah dan konvensi tentang lambang-lambang; Pengertian (concepts), meliputi: struktur pengertian, peranan struktur pengertian, berbagai macam pola, urutan, model matematika, operasi dan algoritma; Keterampilan penalaran, meliputi: memahami pengertian , berfikir logis, memahami contoh negatif, berpikir deduksi, berpikir induksi, berpikir sistematis dan konsisten, menarik kesimpulan, menentukan metode dan membuat alasan, dan menentukan strategi; Keterampian algoritmik, meliputi: keterampilan untuk memahami dan mengikuti langkah yang dibuat orang lain, merancang dan membuat langkah, menggunakan langkah, mendefinisikan dan menjelaskan langkah sehingga dapat dipahami orang lain, membandingkan dan memilih langkah yang efektif dan efisien, serta memperbaiki langkah; Keterampilan menyelesaikan masalah matematika (problem solving) meliputi: memahami pokok persoalan, mendiskusikan alternatif pemecahannya, memecah persoalan utama menjadi bagian-bagian kecil, menyederhanakan persoalan, menggunakan pengalaman masa lampau dan menggunakan intuisi untuk menemukan alternatif pemecahannya, mencoba berbagai cara, bekerja secara sistematis, mencatat apa yang terjadi, mengecek hasilnya dengan mengulang kembali langkah-langkahnya, dan mencoba memahami dan menyelesaikan persoalan yang lain; serta Keterampilan melakukan penyelidikan (investigation), meliputi: mengajukan pertanyaan dan mencari bagaimana cara memperoleh jawabannya, membuat dan menguji hipotesis, mencari dan menentukan informasi yang cocok dan memberi penjelasan mengapa suatu informasi diperlukan, mengumpulkan, mengelompokkan, menyusun, mengurutkan dan membandingkan serta mengolah informasi secara sistematis, mencoba metode alternatif, mengenali pola dan hubungan, dan menyimpulkan matematika.
Sementara itu Shigeo Katagiri (2004) menguraikan bahwa penalaran matematika di sekolah dapat meliputi tiga aspek utama yaitu penalaran yang berkaitan dengan sikap (attitude), penalaran yang berkaitan dengan metode (method), dan penalaran yang berkaitan dengan isi matematika (content).
Ebbutt dan Straker (1995: 60-75), memberikan pandangannya bahwa agar potensi siswa dapat berkembang dan mempelajari matematika secara optimal, asumsi tentang karakteristik subjek didik dan impikasi terhadap pembelajaran matematika diberikan sebagai berikut: Murid akan mempelajari matematika jika mereka mempunyai motivasi, dengan implikasi bagi pengembangan model pembelajaran bahwa guru perlu : menyediakan kegiatan yang menyenangkan, memperhatikan keinginan siswa, membangun pengertian melalui apa yang diketahui oleh siswa, menciptakan suasana kelas yang mendukung kegiatan belajar, memberikan kegiatan yang sesuai dengan tujuan pembelajaran, memberikan kegiatan yang menantang, memberikan kegiatan yang memberikan harapan keberhasilan, menghargai setiap pencapaian siswa. Murid mempelajari matematika dengan caranya sendiri, yang mengandung makna bahwa: siswa belajar dengan cara yang unik dan kemungkinan berbeda dengan teman yang lain, tiap siswa memerlukan pengalaman tersendiri yang terhubung dengan pengalamannya di waktu lampau, tiap siswa mempunyai latar belakang sosial-ekonomi-budaya yang berbeda, dengan implikasi terhadap pembelajaran matematika adalah bahwa guru perlu:mengetahui kelebihan dan kekurangan para siswanya, merencanakan pengembangan yang sesuai dengan tingkat kemampuan siswa, membangun pengetahuan dan ketrampilan siswa baik yang dia peroleh di sekolah maupun di rumah, dan menggunakan catatan kemajuan siswa (assessment).
Murid mempelajari matematika baik secara mandiri maupun melalui kerja sama dengan temannya, yang berimplikasi bahwa dalam mengembangkan model pembelajaran guru perlu: memberikan kesempatan belajar dalam kelompok untuk melatih kerjasama, memberikan kesempatan belajar secara klasikal untuk memberi kesempatan saling bertukar gagasan, memberikan kesempatan kepada siswa untuk melakukan pengembangannya secara mandiri, melibatkan siswa dalam pengambilan keputusan tentang pengembangan yang akan dilakukannya, dan mengajarkan bagaimana cara mempelajari matematika. Murid memerlukan konteks dan situasi yang berbeda-beda dalam mempelajari matematika, yang berimplikasi bahwa guru perlu: menyediakan dan menggunakan berbagai alat peraga, memberi kesempatan belajar matematika di berbagai tempat dan keadaan, memberikan kesempatan menggunakan matematika untuk berbagai keperluan, mengembangkan sikap menggunakan matematika sebagai alat untuk memecahkan problematika baik di sekolah maupun di rumah, menghargai sumbangan tradisi, budaya dan seni dalam pengembangan matematika, dan membantu siswa menilai sendiri pengembangan matematikanya. Interaksi sosial diantara para siswa dan guru akan dapat memberikan kegiatan kritisisasi untuk pembetulan konsep-konsep, sehingga siswa akan memperoleh perbaikan konsep. Dengan demikian diharapkan pengetahuan subyektif matematikanya telah sama dengan pengetahuan obyektifnya.
Dengan demikian bersifat obyektif dan pengetahuan baru pada lingkup individu akan bersifat subyektif. Sehingga, interaksi sosial dalam pembelajaran matematika menjadi sangat penting untuk mendekatkan pengetahuan subyektif matematika menuju pengetahuan obyektifnya. Hal demikian akan dengan mudah dipahami dan diimplementasikan jikalau guru yang bersangkutan juga memahami asumsi-asumsi yang disebut terdahulu.

C. MENGEMBANGKAN MODEL PEMBELAJARAN MATEMATIKA MELALUI LESSON STUDY : Suatu Usaha Melakukan Benchmarking Berwawasan Internasional
Berdasarkan atas penekanan terhadap aspek-aspek tertentu maka dengan mengadaptasi dari Joyce dan Weill (1986), dapat dikembangkan beberapa model pembelajaran sebagai konteks dilakukannya pengembangan model pembelajaran pendidikan matematika, misalnya: Model Pencapaian Konsep; Model Latihan Model pembelajaran; Model Sinektik; Model Pertemuan Kelas; Model Investigasi Kelompok; Model Model pembelajaran Jurisprudensi; Model Latihan Laboratorium; Model Model pembelajaran Sosial; Model Kontrol Diri; dan Model Simulasi. Dalam berbagai model yang dikembangkan maka sesungguhnya seorang guru akan selalu berada diantara dua kutub paradigma pembelajaran matematika yaitu antara pengembangan teachercentered dan student-centered. Secara umum telah dimaklumi bahwa pendidikan matematika kedepan akan lebih bersifat student-centered dimana siswa merupakan pusat pembelajaran, siwalebih bersifat aktif, berinisiatif dan ikut bertangungjawab terhadap proses pembelajaran. Siswa diharapkan juga lebih bersifat otonom. Dengan demikian peran guru berlaku sebagai fasilitator dan dinamisator pembelajaran matematika.
Jika di dalam pembelajarannya guru lebih menekankan kepada penguasaan konsep matematika, sifat matematika, struktur matematika dengan metode diskusi dan melibatkan siswa maka ditengarai guru tersebut sedang menerapkan model pembelajaran pencapaian konsep. Model demikian biasanya berstruktur moderat, guru berusaha mendorong inisiatif siswa dan keterlibatan siswa. Guru melakukan apersepsi dengan inti pokok membangkitkan motivasi dan memberi kesiapan psikologis agar siswa siap dan senang belajar matematika. Model pembelajaran yang lainnya juga dapat dikembangkan misalnya model pengembangan model pembelajaran. Model ini memberi kesempatan kepada siswa untuk melakukan model pembelajaran menyelidiki sifat-sifat matematika dengan dibantu LKS (Lembar kerja Siswa). Terdapat prosedur model pembelajaran dimana guru mengembangkan skema pembelajaran untuk pencapaian hasil model pembelajaran. Para siswa mempunyai kesempatan bekerja bersama atau berkolaborasi dan diskusi secara terbukadan bersama-sama memecahkan masalah matematika. Tahap selanjutnya siswa secara mandiri atau bersama-sama mengumpulkan data, melakukan percobaan, menyusun data menganalisis dan menjelaskan kepada teman lain atau kepada guru.
Dalam perpective Internasional, Lesson Study telah dikembangkan di beberapa negara seperti Amerika Serikat, Australia, Thailand, Inggris, China, Malaysia, dan Jepang. Sejak tahun 2004 hingga sekarang telah kembangkan Lesson Study untuk negara-negara APEC dan ditindak lanjuti dengan kegiatan simposium dan konferensi internasional. Beberapa kegiatan lesson study tersebut dapat di simak sebagai berikut:
1. Lesson Study di Australia (Kontributor Prof Kaye Stacey dari Melbourne University)
2. Lesson Study di Inggris (Kontribusi dari Prof. David Tall, Warwick University)
3. Lesson Study di Taiwanes (Kontribusi dari Prof Fou Lai Lin, Taipei University)
4. Lesson Study di Jepang (Kontribusi dari Prof. Katagiri, University of Sapporo)
5. Lesson Study di Singapura (Kontribusi dari Prof. Yeap Ban Har)
6. Lesson Study di Indonesia (Kontribusi dari Dr. Marsigit dkk, State University of Yogyakarta)

D. MENGEMBANGKAN MGMP BERBASIS IT SEBAGAI FUNGSI LAYANAN PENGEMBANGAN MODEL PEMBELAJARAN DAN PENGEMBANGAN PROFESI GURU
Benchmarking pada level internasional menunjukkan bahwa MGMP mempunyai kedudukan dan peran yang sangat strategis bagi pengembangan profesi guru. Untuk mengoptimalkan peran MGMP maka perlu dikembangkan paradigma yang visioner yaitu suatu pandangan yang mampu menstransformir pandangan lama untuk menyiapkan masa depan sekaligus mengejar ketertinggalannya. Beberapa butir paradigma baru (visi) MGMP dapat diutarakan bahwa di dalam MGMP perlu dikembangkan:
1. Sense of connectivity: yaitu suatu organisasi profesi yang bersifat sistemik yang dapat menjadi penghubung di antara stake-holder pendidikan (matematika).
2. Sense of services: yaitu dapat merespon dan melayani kebutuhan pengembangan profesi para angotanya
3. Sense of inovation: yaitu menjadi pelopor dan mengimplementasikan pembaharuan paradigma pendidikan
4. Sense of mobility: perlunya pengembangan MGMP didukung oleh teknologi informatika dan komunikasi (TIK)

a. MGMP berbasis Website
Banyak sekali alamat-alamat website untuk MGMP, dari sarana website inilah guru dapat mengembangkan kemampuan bahkan dapat meningkatkan kemampuan guru dalam bidang teknologi.

b. MGMP Sebagai Wahana Mencari Sumber Pengembangan Pendidikan Matematika
1. Math Forum Internet Mathematics Library : http://mathforum.org/
2. ERIC (Educational Resources Information Center) Database: http://www.eric.ed.gov/
3. MATHDI, Mathematics Didactics Database: http://www.emis.de/MATH/DI.html
4. The Prime Mathematics Encyclopedia : http://www.mathacademy.com/pr/prime/index.asp
5. Mathematical Atlas A Gateway to Modern Mathematics: http://www.math.niu.edu/~rusin/knownmath/
6. Eric Weisstein's World of Mathematics: http://mathworld.wolfram.com/
7. Calculators Online Reference Center: http://www.martindalecenter.com/Calculators2.html
8. A Dictionary of Units: http://www.ex.ac.uk/cimt/dictunit/dictunit.html
9. How Many? A Dictionary of Units of Measure: http://www.unc.edu/~rowlett/units/index.html
10. MATH2.org: http://www.math2.org/
11. MacTutor: http://www-groups.dcs.st-andrews.ac.uk/~history/
12. MacTutor History of Mathematics: http://www-groups.dcs.st-and.ac.uk/~history/
13. MacTutor Index of Biographies: http://www-history.mcs.st-and.ac.uk/BiogIndex.html
14. Biographies of Women Mathematicians: http://www.agnesscott.edu/lriddle/women/women.html
15. Mathematicians of the African Diaspora (MAD): http://www.math.buffalo.edu/mad/
16. Mathematical Quotations Server: http://math.furman.edu/~mwoodard/mquot.html

c. MGMP Sebagai Wahana Mengembangkan RPP
1. Maser Generation II Project - General Math Sites: {http://www.svsu.edu/mathscicenter/ resources_mathsites.cfm}
2. Ask ERIC Lesson Plans Collection – Mathematics: {http://www.eduref.org/cgibin/ print.cgi/Resources/Subjects/Mathematics/Lesson_Plans.html}
3. Breaking Away from the Math Book: Creative Projects for K-8: http://www.math.nmsu.edu/breakingaway/main.html
4. CEC Lesson Plans: http://www.col-ed.org/cur/
5. ENC Lesson Plans-math topics: http://enc.org/weblinks/lessonplans/math/
6. Math Forum - Lesson Plans: http://mathforum.org/library/resource_types/lesson_plans/

d. MGMP Sebagai Wahana Pengembangan PBM
1. American Mathematics Competitions: http://www.unl.edu/amc/
2. Mathematics Contests, Competitions, and Problems Sets: http://archives.math.utk.edu/contests/
3. PMathschallenge.net: http://mathschallenge.net/
4. 20,000 Problems Under the Sea - Mathematical Treasure on the Web: {http://problems.math.umr.edu/index.htm}

e. MGMP Sebagai Wahana Pengembangan Profesi
1. American Mathematical Society: Mathematics Research and Scholarship: http://www.ams.org/
2. Association of Teachers of Mathematics (ATM): http://www.atm.org.uk/
3. Association for Women in Mathematics (AWM): http://www.awm-math.org/
4. Mathematical Association of America (MAA): http://www.maa.org/
5. Mathematical Sciences Education Board of the Center for Education (MSEB): Error! Hyperlink reference not valid.
6. National Council of Teachers of Mathematics (NCTM): http://www.nctm.org/
7. School Science and Mathematics Association (SSMA): http://www.ssma.org/
8. TERC: http://www.terc.edu/
9. Math Forum - Teacher Education and Professional Development: http://mathforum.org/
10. mathed/professional.dev.html
11. World Lecture Hall: {http://web.austin.utexas.edu/wlh/}
12. Math Forum - Public Discussion: http://mathforum.org/discussions/

f. Mengefektifkan Peran MGMP
Agar dapat mewujudkan visi tersebut maka fungsi layanan dan pengembangan TIK dalam MGMP dilakukan sedemikian rupa sehingga dapat dilakukan kegiatan-kegiatan sebagai berikut:
1. Searching: layanan dan komunikasi berbasis WEB dan internet
2. Collecting: menyediakan data pengembangan profesi pendidikan
3. Creating: tempat dan dapat memproduksi hasil pengembangan profesi guru
4. Sharing: kegiatan tukar menukar informasi dan pengalaman dari aspek pengembangan guru
5. Communicating: memungkinkan para anggota, relasi atau partner kerja untuk berkomunikasi satu dengan yang lain
6. Coordinating: melakukan koordinasi kegiatan pengembangan profesi
7. Meeting: dalam bentuk workshop atau seminar atau pelatihan
8. Socializing: sosialisasi kegiatan dan hasil pengembangan profesi
9. Evaluating: melakukan kegiatan refleksi terhadap aspek pengembangan profesi, termasuk praktek pembelajaran para anggotanya
10. Buying-selling:menghasilkan produk-produk yang bernilai ekonomi
11. Learning: pengembangan profesi dilakukan secara kontinue dengan melibatkan dan mengundang pakar atau nara sumber dari berbagai kalangan.
12. Enjoying:keterlibatan bersifat membawa manfaat dengan pendekatan saling asah, asih dan asuh.







KESIMPULAN

Jika kita menghendaki pembaharuan pendidikan matematika maka pengembangan model pembelajaran pendidikan matematika akan menjadi suatu kebutuhan. Selain dari aspek legal formal maka pengembangan model pembelajaran pendidikan matematika juga diperlukan karena perubahan paradigma. Dengan mengembangkan model pembelajaran pendidikan matematika yang berorientasi kepada siswa, kita dapat mengetahui adanya perbedaan individu atau kelompok di dalam mempelajarai matematika, kita dapat menentukan kedudukan siswa dalam kelompok, dapat membandingkan hasil belajar antar kelompok. Kita juga dapat melakukan pemeriksaan kesesuaian antara tujuan dan hasil hasil belajar; apakah standar kompetensi atau kompetensi dasar telah dicapai? Hasil-hasil pengembangan model pembelajaran dapat digunakan untuk penyempurnaan program, bimbingan, pemberian informasi kepada masyarakat. Disamping itu kita juga dapat melakukan perbandingan antara performance dan kriteria untuk setiap dimensi program serta penyempurnaan program dan penyimpulan hasil pendidikan matematika secara keseluruhan. Selanjutnya kita dapat melakukan studi tentang pelaksanaan program, pengaruh lingkungan belajar, pengaruh program, kurikulum atau silabus terhadap hasil belajar; dan pada akhirnya digunakan untuk penyempurnaan program pendidikan matematika secara keseluruhan.
Kegiatan Lesson Study dapat dipandang sebagai kegiatan penelitian pendidikan yang bersifat sistemik beserta kegiatan penelitian yang lain seperti PTK, dan pelaksanaanya dapat didukung dengan pengembangan MGMP sekaligus dalam rangka pengembangan profesi guru. Khususnya tentang pengembangan model pembelajaran matematika di SMA kita perlu
melakukan hal-hal sebagai berikut:
1. Merencanakan lingkungan belajar matematika
a. mengembangkan sumber belajar dari lingkungan belajar
b. merencanakan pengembangan yang bersifat fleksibel
c. melibatkan siswa dalam menciptakan lingkungan belajar matematika.
d. melibatkan siswa dalam kegiatan apersepsi
2. Mengembangkan lingkungan sosial siswa
a. merencanakan pengembangan untuk bekerja sama.
b. mendorong siswa saling menghargai.
c. menelusuri perasaan siswa tentang matematika
d. mengembangkan model-model matematika.
3. Merencanakan pengembangan model pembelajaran matematika
a. merencanakan pengembangan matematika yang seimbang dalam hal : materi, waktu, kesulitan, aktivitas, dsb.
b. merencanakan pengembangan matematika yang terbuka (open-ended)
c. merencanakan pembelajaran matematika sesuai kemampuan siswa.
d. mengembangkan topik matematika.
e. mengembangkan kemampuan penalaran matematika yang meliputi: sikap kritis, metode mempelajarinya dan kemampuan matematika
f. merencanakan kapan dan bilamana membantu siswa ? Melakukan dan mengimplementasikan hasil refleksi pengembangan model pembelajaran matematika

0 komentar:

Posting Komentar